OpenAI API : Retrieve fine-tune 살펴 보겠습니다

이번에는 Retrieve fine-tune 에 대해서 살펴 보겠습니다

(2) Retrieve fine-tune

제목내용설명
RequestGET https://api.openai.com/v1/fine-tunes/{fine_tune_id}Gets info about the fine-tune job.
Parametersfint_tune_id (string / 필수)The ID of the fine-tune job

Request 샘플과 response 값을 살펴 보겠습니다.

Requestcurl https://api.openai.com/v1/fine-tunes/ft-AF1WoRqd3aJAHsqc9NY7iL8F \
-H “Authorization: Bearer $OPENAI_API_KEY”
Response{
“id”: “ft-AF1WoRqd3aJAHsqc9NY7iL8F”,
“object”: “fine-tune”,
“model”: “curie”,
“created_at”: 1614807352,
“events”: [
{
“object”: “fine-tune-event”,
“created_at”: 1614807352,
“level”: “info”,
“message”: “Job enqueued. Waiting for jobs ahead to complete. Queue number: 0.”
},
{
“object”: “fine-tune-event”,
“created_at”: 1614807356,
“level”: “info”,
“message”: “Job started.”
},
{
“object”: “fine-tune-event”,
“created_at”: 1614807861,
“level”: “info”,
“message”: “Uploaded snapshot: curie:ft-acmeco-2021-03-03-21-44-20.”
},
{
“object”: “fine-tune-event”,
“created_at”: 1614807864,
“level”: “info”,
“message”: “Uploaded result files: file-QQm6ZpqdNwAaVC3aSz5sWwLT.”
},
{
“object”: “fine-tune-event”,
“created_at”: 1614807864,
“level”: “info”,
“message”: “Job succeeded.”
}
],
“fine_tuned_model”: “curie:ft-acmeco-2021-03-03-21-44-20”,
“hyperparams”: {
“batch_size”: 4,
“learning_rate_multiplier”: 0.1,
“n_epochs”: 4,
“prompt_loss_weight”: 0.1,
},
“organization_id”: “org-…”,
“result_files”: [
{
“id”: “file-QQm6ZpqdNwAaVC3aSz5sWwLT”,
“object”: “file”,
“bytes”: 81509,
“created_at”: 1614807863,
“filename”: “compiled_results.csv”,
“purpose”: “fine-tune-results”
}
],
“status”: “succeeded”,
“validation_files”: [],
“training_files”: [
{
“id”: “file-XGinujblHPwGLSztz8cPS8XY”,
“object”: “file”,
“bytes”: 1547276,
“created_at”: 1610062281,
“filename”: “my-data-train.jsonl”,
“purpose”: “fine-tune-train”
}
],
“updated_at”: 1614807865,
}

Response 중 진행된 [Events] 값을 출력해 보면 다음과 같습니다.

Fine-tune 시작 일시(2023-04-27 00:03:20)부터 Fine-tune succeeded(2023-04-27 00:04:02)까지 약 40초 가량 되는 것 같네요. 물론 업로드 데이터 size도 얼마되지 않았습니다.

Training에 사용된 기본 Hyper-params 값을 살펴보면 다음과 같습니다.

기본값으로 Epoch 4, 배치 1, loss weight 0.01, learning rate multiplier 0.1이 설정된 것을 확인할 수 있습니다.

결과 값을 살펴 보겠습니다.

파일 ID, Purpose, 파일 생성 일시, Filename, Status, 결과 파일 Download 값을 확인할 수 있으며, Download 값을 확인해 보려고 했더니 추가 작업이 필요하네요. 이건 다음에 보도록 하겠습니다.

Leave a Reply

Your email address will not be published. Required fields are marked *

인기 글

Ubuntu 22.04 LTS에 Python 3.8 or 3.9 설치 방법
서버 : Vultr 클라우드OS: Ubuntu 22.04 LTS사용자 계정 생성하여 설치 진행함1. Start with the system updatesudo apt update...
오라클 클라우드 OCI 가입 드디어 성공 했습니다 (상세 후기)
2023년 2월 16일에 ‘오라클 클라우드 지급 검증 실패 글‘을 남긴 적이 있습니다.그 때 검색을 통해 해결 방법을 찾아 보았고, 당시 성공했던 분들의...
WSL2/Ubuntu 22.04 LTS에서 Jupyter notebook 실행하기
WSL2 Ubuntu에서 Jupyter notebook(Jupyter Lab) 설치는 다음과 같습니다.$ pip install jupyter $ pip install jupyterlab단,...
카페24 클라우드 환경에 cPanel & Whmcs 설치
Vultr나 Linode 같은 클라우드에서도 시도 하였으나, 여러 설정이 복잡해서 포기하던 차에 카페24 클라우드에서 cPanel & Whmcs 설치를 했더니 한 번에 로그인...
WSL2/Ubuntu 22.04 LTS에 Anaconda 설치 
WSL2/Ubuntu 환경에서 Python 버전별로 가상환경을 만드는 방법 중 그나마 Anaconda 방법이 좋은 것 같네요. 설치 방법은 간단합니다.1. apt update사용자...