OpenAI API : Retrieve fine-tune 살펴 보겠습니다

이번에는 Retrieve fine-tune 에 대해서 살펴 보겠습니다

(2) Retrieve fine-tune

제목내용설명
RequestGET https://api.openai.com/v1/fine-tunes/{fine_tune_id}Gets info about the fine-tune job.
Parametersfint_tune_id (string / 필수)The ID of the fine-tune job

Request 샘플과 response 값을 살펴 보겠습니다.

Requestcurl https://api.openai.com/v1/fine-tunes/ft-AF1WoRqd3aJAHsqc9NY7iL8F \
-H “Authorization: Bearer $OPENAI_API_KEY”
Response{
“id”: “ft-AF1WoRqd3aJAHsqc9NY7iL8F”,
“object”: “fine-tune”,
“model”: “curie”,
“created_at”: 1614807352,
“events”: [
{
“object”: “fine-tune-event”,
“created_at”: 1614807352,
“level”: “info”,
“message”: “Job enqueued. Waiting for jobs ahead to complete. Queue number: 0.”
},
{
“object”: “fine-tune-event”,
“created_at”: 1614807356,
“level”: “info”,
“message”: “Job started.”
},
{
“object”: “fine-tune-event”,
“created_at”: 1614807861,
“level”: “info”,
“message”: “Uploaded snapshot: curie:ft-acmeco-2021-03-03-21-44-20.”
},
{
“object”: “fine-tune-event”,
“created_at”: 1614807864,
“level”: “info”,
“message”: “Uploaded result files: file-QQm6ZpqdNwAaVC3aSz5sWwLT.”
},
{
“object”: “fine-tune-event”,
“created_at”: 1614807864,
“level”: “info”,
“message”: “Job succeeded.”
}
],
“fine_tuned_model”: “curie:ft-acmeco-2021-03-03-21-44-20”,
“hyperparams”: {
“batch_size”: 4,
“learning_rate_multiplier”: 0.1,
“n_epochs”: 4,
“prompt_loss_weight”: 0.1,
},
“organization_id”: “org-…”,
“result_files”: [
{
“id”: “file-QQm6ZpqdNwAaVC3aSz5sWwLT”,
“object”: “file”,
“bytes”: 81509,
“created_at”: 1614807863,
“filename”: “compiled_results.csv”,
“purpose”: “fine-tune-results”
}
],
“status”: “succeeded”,
“validation_files”: [],
“training_files”: [
{
“id”: “file-XGinujblHPwGLSztz8cPS8XY”,
“object”: “file”,
“bytes”: 1547276,
“created_at”: 1610062281,
“filename”: “my-data-train.jsonl”,
“purpose”: “fine-tune-train”
}
],
“updated_at”: 1614807865,
}

Response 중 진행된 [Events] 값을 출력해 보면 다음과 같습니다.

Fine-tune 시작 일시(2023-04-27 00:03:20)부터 Fine-tune succeeded(2023-04-27 00:04:02)까지 약 40초 가량 되는 것 같네요. 물론 업로드 데이터 size도 얼마되지 않았습니다.

Training에 사용된 기본 Hyper-params 값을 살펴보면 다음과 같습니다.

기본값으로 Epoch 4, 배치 1, loss weight 0.01, learning rate multiplier 0.1이 설정된 것을 확인할 수 있습니다.

결과 값을 살펴 보겠습니다.

파일 ID, Purpose, 파일 생성 일시, Filename, Status, 결과 파일 Download 값을 확인할 수 있으며, Download 값을 확인해 보려고 했더니 추가 작업이 필요하네요. 이건 다음에 보도록 하겠습니다.

Leave a Reply

Your email address will not be published. Required fields are marked *

인기 글

Ubuntu 22.04 LTS에 Python 3.8 or 3.9 설치 방법
서버 : Vultr 클라우드OS: Ubuntu 22.04 LTS사용자 계정 생성하여 설치 진행함1. Start with the system updatesudo apt update...
오라클 클라우드 OCI 가입 드디어 성공 했습니다 (상세 후기)
2023년 2월 16일에 ‘오라클 클라우드 지급 검증 실패 글‘을 남긴 적이 있습니다.그 때 검색을 통해 해결 방법을 찾아 보았고, 당시 성공했던 분들의...
자동화설비 구조 및 데이터PC 역할
자동화설비에 사용되는 하드웨어는 다음과같습니다.PLC : PLC는 자동화 설비의 제어를 담당하는 핵심 장치로, 프로그래밍을 통해 다양한 장비와 프로세스를 제어할 수 있습니다....
회사 도메인으로 무료 회사 메일 만드는 방법 정리
회사 도메인으로 무료 메일 만드는 방법에는 네이버, 다음, 구글 메일서버를 이용하는 방법이 있었는데, 근래 네이버, 구글의 ㄱㅇ우 유료 서비스로 전환되어 현재는 Daum 스마트워크를...
자동화설비 데이터PC 환경 설정
파이썬 3.11.0환경변수 설정파이참 커뮤니티 에디션 다운로드프로젝트 필수 라이브러리 다운로드QT5 환경 변수 추가PostgreSQL...